
Physically Weighted
Approximations of Unsteady
Aerodynamic Forces Using
the Minimum-State Method

Mordechay Karpel and

Sherwood Tiffany Hoadley

|r_ll

=

T



:,] _ . "__S

== --

_: : : = -

:F :-

..... LL: :

::: ±:

..... _ • i(; .......

-- "



NASA
Technical

Paper
3025

1991

National Aeronautics and
Space Administration

Office of Management
Scientific and Technical
Information Division

Physically Weighted
Approximations of Unsteady
Aerodynamic Forces Using
the Minimum-State Method

Mordechay Karpel and

Sherwood Tiffany Hoadley

Langley Research Center

Hampton, Virginia





Contents

Summary .................................. 1

1. Introduction ................................ 1

2. Approximation Equations and Solution Procedures ............... 2

2.1. Equations of Motion .......................... 2

2.2. The Minimum-State Approximation Procedure ............... 3

3. Data Weighting .............................. 5

3.1. Data Normalization ........................... 5

3.2. Physical Weighting ........................... 5

3.2.1. Structural mode measure of importance ............... 5

3.2.2. Control mode measure of importance ................ 5
3.2.3. Gust mode measure of importance ................. 6

3.2.4. Physical weights ......................... 6

4. Numerical Application to the Active Flexible Wing Model ............ 7

4.1. Data Normalization Cases ........................ 7

4.1.1. The iterative approximation solution ................ 7

4.1.2. Comparison with other approximation methods ............ 7

4.2. Physical Weighting Cases ........................ 7

4.2.1. The physically weighted aerodynamic data .............. 7

4.2.2. Approximation convergence .................... 8

4.2.3. Approximation curve fit ...................... 8

4.2.4. Accuracy of subsequent aeroelastic characteristics ........... 8

4.2.5. Various approximation constraints ................. 9

4.2.6. Calculation time comparisons .................. .. 9

5. Concluding Remarks ............................ 9

Appendix A Application of Constraints in MIST ................ 11

Appendix B--The MIST Computer Program .................. 13

B.1. Program Description ......................... 13

B.2. Input Files .............................. 13

B.3. Output Files ............................. 14

Appendix C--Input and Output for a Sample Run ............... 15

References ................................. 16

Symbols .................................. 17

Tables ................................... 20

Figures .................................. 33

=°o
111

m_L__t_j_,_ _ PRECEDING PAGE BLA_;K NOT FILMED



a _

i

|

m
m

_w

a=

IE



Summary

The minimum-state method for rational approx-

imation of unsteady aerodynamic forcc coefficient

matrices, modified to allow physical weighting of

the tabulated aerodynamic data, is presented. The
approximation formula and the associated time-

domain, state-space open-loop equations of motion

are given, and the numerical procedures for calculat-

ing the approximation matrices, with weighted data

and with various equality constraints, are described.

Two data weighting options are presented. The first

weighting is for normalizing the aerodynamic data

to the maximum unit value of each aerodynamic co-

efficient. The second weighting is one in which
each tabulated coefficient, at each reduced frequency

value, is weighted according to the effect of an incre-
mental error of this coefficient on aeroelastic charac-

teristics of the system. This weighting yields a better

fit of the more important terms at the expense of less

important ones. The resulting approximation yields

a relatively low number of aerodynamic lag states in

the subsequent state-space model.
The formulation of this work forms the basis of

the Minimum-State (MIST) computer program that
is written in FORTRAN-77 for use on the VAX

microcomputer and interfaces with NASA's Inter-

action of Structures, Aerodynamics, and Controls

(ISAC) computer program. The program structure,

capabilities, and interfaces are outlined in the appen-

dixes, and a numerical example that utilizes Rock-

well's Active Flexible Wing (AFW) model is given
and discussed.

1. Introduction

Various control analysis, design, and simulation

techniques of aeroservoelastic systems require the
equations of motion to be cast in a linear, time-

invariant state-space form. In order to account for

unsteady aerodynamics, the aerodynamic forces have

to be described as a rational function of the Laplace

variable (s), as has been shown in various applica-

tions such as those of Sevart (ref. 1) and Edwards

(ref. 2). Systematic techniques that use oscillatory

aerodynamic matrices (defined along the imaginary

axis of the s-plane) to generate rational approxi-

mate solutions for arbitrary motion were developed

by several authors. The most widely used techniques

are those based on the least-squares (LS) method of

Roger (ref. 3) and the matrix-Pad@ (MP) method of

Vepa (ref. 4). The resulting state-space equations
include augmented states that represent the aero-

dynamic lags. The number of aerodynamic aug-

mented states resulting from Roger's and Vepa's

methods is equal to the number of the approximat-

ing denominator roots, multiplied by the number of

vibration modes. Karpel (refs. 5 and 6) introduced

the minimum-state (MS) method in which a higher

number of denominator roots are required per given

accuracy. However, the number of augmenting states

resulting from this method is equal to the number of

the denominator roots, regardless of the number of
modes. The minimum-state approximation solution

of references 5 and 6 implies perfect fit of the stcady

aerodynamics and of the aerodynamic matrix at one

other reduced frequency value to be chosen by the

analyst. A nonlinear, iterative least-squares method

is used to approximate the other tabulated aerody-
namic matrices.

Tiffany and Adams (refs. 7-9) extended the least-

squares method, the modified matrix-Pad@ method,
and the minimum-state method to include the capa-

bility for enforcing or relaxing various equality con-

straints as desired by the analyst. These extensions,

abbreviated by ELS, EMMP, and EMS, respectively,
are the optional approximation methods in the In-

teraction of Structures, Aerodynamics, and Controls

(ISAC) computer program, which is an updated ver-
sion of reference 10. The EMS method has no re-

quirements on the number of constraints enforced.

Although certain types of constraints are solved ex-

plicitly, other types are enforced by a Lagrangian

multiplier technique that increases the number of si-

multaneous equations to be solved. Hence, the ef-

fect of the flexibility in constraint selection on the
minimum-state method is to increase the number of

equations solved simultaneously in each least-squares

iteration step. This can slow down the iterative

process and cause computational limitations to be

reached sooner. Tiffany and Adams also employ non-

linear programming techniques to optimize the values

of the approximation roots with respect to an overall

error function. Their experience was that applying
this optimization to the minimum-state method re-

quires considerably more computation time than ap-

plying it to the other methods since it adds another

iteration process to a method that already requires

a two-step iteration process. On the other hand,

since the minimum-state method allows a larger num-

ber of distinct approximation roots than allowed by

the other methods, optimization is not as important.
The various numerical examples of references 5, 6, 9,

and 11 demonstrated that the MS method yields a

significant reduction of the number of aerodynamic

states (by a factor of 2 or more) relative to the other
methods.

Karpel (ref. 11) modified the original minimum-
state formulation to accept weighted data and to

allow more constraint options without increasing

the problem size. In calculating an overall error



function,TiffanyandAdamsnormalizedthe fit er-
rorsof eachaerodynamiccoefficientbut treatedthe
differenttabulatedpointsfor eachaerodynamicco-
efficientasequallyimportant(exceptforthe imposed
equalityconstraintpoints). Thephysicalweighting
algorithmsuggestedin reference11weightsdifferent
data termsaccordingto the effectof their errorson
aeroelasticcharacteristics.This weightingyieldsa
better fit of the moreimportantterms,at the ex-
penseof lessimportantones,andtherebyincreases
theaccuracyof thesubsequentaeroservoelasticsys-
tembehavior.

The formulationof reference11 is the basisof
theMinimum-State(MIST)computerprogram.The
purposeof this paperis to outlineandexpandkey
equationsin the way that they are usedin the
programto describethe programstructure,main
features,andinterfaceswith ISAC,andalsoto givea
newnumericalexample,with a furtherinvestigation
ofthedifferentoptionsandemphasisonthephysical
weightingmethod.

2. Approximation Equations and
Solution Procedures

2.1. Equations of Motion

The common approach for formulating the equa-

tions of motion of an aeroelastic system starts with

a normal modes analysis of the structural system.
A set of low-frequency normal vibration modes is

chosen to represent the structural motion in gen-
eralized coordinates. Aeroservoelastic formulation

requires additional modes to represent the control-
surface commanded deflections. These modes are de.

fined herein by a rigid rotation of a control surface

and zero deflections elscwhcre. Gust velocity modes

can also be introduced if required. The complex,

generalized, unsteady aerodynamic force coefficient
matrix [Q(s)] is defined by the Laplace transform of

its structural-, control-, and gust-related partitions,

[Qs(s)], [Qc(s)], and [Qg(s)], respectively, as

{Fs(s)} = -q [qs(s)] - q [qc(s)]

q [Qg(s)] {Wg(S)} (1)
V

where {Fs} is the vector of ns generalized aero-

dynamic forces on the vibration modes, {_} is the
vector of ns generalized structural displacements,

{wg} is the vector of ng gust velocities, and {5c}
is the vector of nc cofitrol-surface commanded de-

flections, namely, the actuator angular outputs. It

is assumed in this work that control-surface hinge-
moment effects are insignificant (i.e., the controls are

2

irreversible) and, consequently, the control-related

rows of [Q(s)] are eliminated. These terms are dealt
.with in reference 11.

The Laplace transform of the open-loop

aeroelastic-system equations of motion, excited by

control surface and gust input, can be written as

[C(s)] {_(s)} = - ([Mc] s 2 + q [Qc(s)]) {be(S)}

q [Qg(s)] {Wg(S)} (2)
V

where

[C(s)] - [Ms] s 2 + [Bs] s + [Ks] + q [Qs(s)]

where [Ms], [Bs], and [Ks] are the generalized struc-

tural mass, damping, and stiffness matrices, respec-

tively, and [Mc] is the coupling mass matrix between
the control and the structural modes. In order to

transform equation (2) into a time-domain, constant
coefficient set of equations, the aerodynamic matrix

[Q(s)] has to be described as a rational function -"
of s. The minimum-state method used in references

6, 8, 9, and 11 approximates [Q(s)] by

[{_(p)] = [A0] + [A1Jp + [A2]p _ + [D](p[I] !

i-[R])-I[E]p (3)

where i

and where p is the nondimensionalized Laplace vari-

able given as p = sb/V. The real-valued approxi-

mation matrices of equation (3) are then partitioned
as

JAil= [Asi A_ Ag,] (i=0,1,2))
!

[D] = [Ds] _ (4)
!

[E]= [Es Ec Eg] J

It is assumed herein that [Ag2] = 0. The result-

ing time-domain, state-space open-loop equation of
motion is

{_¢} = [A] {x} + [B] {u} + [Bw] {w} (5)

where i



[A] =

Xa

0

- Ms 1 (Ks + qAso)

0

I 0

-- Ms 1 (ns + _Asl) - qMs -1D

Es _R

{u) = &

I 0 0 0
_1Aco b--- 1 (Me b2---- -qM_ _Ms At1 __-1 +[B]

0 Ee 0

(6a)

(6b)

where

{w t /
{w)= %

[ o o[Bw] _21Ago b= -- -- V_ Agl

0 Eg

qb2 rAs ]
I-Ms] = [Ms] + _-_t 2J

and where {Xa} is the vector of aerodynamic states.
For closed-loop analysis, the states of equation (5)
are augmented with control-system related states.

2.2. The Minimum-State Approximation
Procedure

Tabular unsteady aerodynamic complex matrices
calculated for several reduced frequency values (kg --
wgb/V) along the imaginary axis of the nondimen-
sional Laplace p-plane, namely, at various p -- ikt
points, are approximated with rational functions us-
ing the minimum-state approach. The full devel-
opment of the minimum-state approach is given in
reference 6. Key equations are repeated here. The
equations for alternative constraint sets that incorpo-
rate some constraint selectability without adversely
affecting the problem size along with the iterative
process for determining the approximation are de-
scribed herein. The real and imaginary parts of
the aerodynamic approximation of equation (3) with
p = i k are

._[_'(k)] = [A0]- [A2] k 2 + k2[D] _(k2[I] + [R]2) -1 [El

(7)

(6c)

and

[G(k)] = [A1] k-k[D] (k2[I] + [R]2) -1 [R][E] (8)

For a given root matrix JR], the problem is to find
the combination of [A0], [A1], [A2], [D], and [E] that
best fits the tabulated aerodynamic matrices

[Q(ikt)] = IF(k/)] + i[G(kt)]

where [F] and [G] are real matrices. Three approx-
imation constraints are used to reduce the problem

size by explicitly determining [A0], [All, and [A2] of
equations (7) and (8). The constraints are given as
follows:

1. A data-match constraint at k = 0, which yields

[A0] = [F(0)] (9)

2. Either a real-part data-match constraint at a

nonzero k = k f, that is,

[F(kf)] = [F(kf)]

3



which, when using constraint 1, yields and

/_

+ [R]2) -1 [El (10)

or an approximation constraint (which is always used
for gust-related terms): -

[A2] = [0] (11)

The real-part approximation equations at the non-

matched tabulated ke values are

k2[D] [Cf(ke) ][E] _ [ff(ke) ] (12)

where, when the real-part data-match constraint at

k = k] is applied,

[Cf(kg)] : (k_[I] + [a]2) -1

and

-- (k_[I] + [R]2) -1

(13a)

[F(ke) ] -- ([F(kg)]- IF(0)]) - ([F(kf)] -[F(0)]) k__

(13b)
or, when the [A2] = 0 constraint is applied,

[-Cf(kt)] = (k2[I] + [R]2) -1 (14a)

and

[F(ke) ] = [F(kt)]- [F(0)] (14b)

3. Either an imaginary-part data-match con-

straint at a nonzero k = kg, which yields

[A1] = [G(kg)]/kg + [D] (k2[I] + [R]2) -1

or an approximation slope constraint:

[R][E]

(15)

[A1] = [0] (16)

The imaginary-part approximation equations at the

nonmatched tabulated k t values are

ke[D] [-Cg(kt) ] [R][E] _ [G(k_)] (17)

where, when the imaginary data-match constraint at

k = kg is applied,

[-Cg(kt)] = (k_[I] + JR]2) -1 - (k2[I] + JR]2) -1

(lSa)

4

ke: [¢(kg)],--- [¢(ke)]
_g

(lSb)

or, when the [A1] --- 0 constraint is applied,

_-Cg(ke)] = (k_[I] + [R]2) -1 (19a)

and

[-G(kt)] = -[G(kt) ] (19b)

It should be noted that different constraints may be
assigned to different aerodynamic terms, or even to

the real and imaginary parts of the same term. A

description of the constraint options in the MIST

computer program is given in appendix A.

The m × m matrix [R] is diagonal with distinct

negative terms. Default values are provided for initial

estimates of the ns x m [D] matrix which may be

overridden by the analyst. The default choice is a

zero matrix except for all diagonal elements Dii and

D(vm+i) i (when ns > m, where v is an arbitrary

positive integer) or Di(vns+i) (when m > ns) which

are equal to 1. For a given [R] and an initial

value of [D], equations 02) and (17) provide an

overdetermined set of approximate equations for each

column of [E]. This set of equations can be solved
by the least-squares approach in which each data

term in the right-hand side of equations (12) and

(17) may be assigned a weight Wijt, where the real
and the imaginary parts are assigned the same set of

weights. The weighted least-squares solution for the

jth column of [E] is obtained by solving

(I-,,1"Iw,,,]'t-,,l+t-,,JIw,,,]'t<){,,>

= Iw,,t,(,,,,,,>

where

[Aye] = [k2D Cf(kt) ] (21a)

and

[Age] = [kiD C-g(kt) R] (21b)

where _ Wjt \] represents the diagonal elements of
I. if

the matrix formed by taking the jth column from

each weight matrix [W]g assigned to [Q(ike) ]. Here,

{ffj(kt)} and {Gj(kt) } are the jth columns of

[

m

i
i

lm

i
m

m

E



[F(kt)] and [-G(kg)]of equations(12) and (17),
respectively.

After solvingfor [E], a least-squaressolutionis
obtainedfor therowsof [D]by solving

then the overallerror functionet is equivalent to

the weighted error function defined in reference 9,

with unit weights therein. The absolute value of a

weighted aerodynamic term is

z Iw,,,] + Iw4

where

and

(22)

where _ Wit \] represents the diagonal elements of
L $

the matrix formed by taking the ith row from each

[Wig, and {Fi(ke)} T and {g_(ke)} T are the ith rows

of [F(k_)] and [-d(ke)], respectively. The procedure

repeats alternate solutions for [E] and [D]. After each

[D] ---+ [E] _ [D] cycle, the procedure calculates the
overall error:

et = , /E ei_S (24)

V _3e

where

eijt = JQij (ikg) - Qij (ikt) Iwij t

where Wijg is the (i,j)th term of [W]g. The nonlin-
ear iterative solution terminates after convergence is
obtained for et.

3. Data Weighting

3.1. Data Normalization

Tiffany and Adams (refs. 8 and 9) used a nor-
malized total error function for evaluating an overall

goodness of fit for all the aerodynamic approxima-

tions. This error function was employed to avoid

mode normalization effects on the least-squares solu-

tion. If the weights in equation (24) are defined so
that each

= w b (25)
where

1

Wi_ = max (]Qi_(ike)], 1)g

Q_j (kt) = wi*j Iq_j (ikt)l (26)

The effect of this weighting is renormalization of

the input data such that the maximum Q(ke) of

each (i,j)th term is 1, with the exception of terms

with maximum IQ(ike)[ of less than 1 which are not
normalized. Thus, et of equation (24) is consistent

with the "common measure of approximation perfor-

mance" of reference 9. The computer program MIST

allows for this data normalization weighting in order

to compare results with the ISAC program.

3.2. Physical Weighting

The physical weighting is designed to weight each

term of the tabulated data according to a "measure

of importance," which is based on the partial deriva-

tive of a selected open-loop characteristic parame-
ter, at nominal flow conditions, with respect to the

weighted term. Three groups of weights associated

with [Qs], [Qc], and [Qg] of equation (1) are defined.

The resulting weight matrices [W]e are a function of
kt and, like the data normalization weights, they lead

to least-squares solutions in which mode normaliza-
tion effects are avoided.

3.2.1. Structural mode measure of impor-

tance. The weighting of a term Qsij in the mode-

related matrix [Qs] is based on the derivative of
the open-loop system determinant IIC(ik)][ of equa-

tion (2), with respect to that term:

OIIC(ik) ll

OQsij
-- q × Cofactor [Cij(k)] (27)

The measure of importance associated with Qsij (ike)
is defined by the absolute value of this cofactor

divided by [[C(ik)[[, which is actually the absolute

value of the (j, i)th term in [C(ike)] -1. The resulting

structural measure-of-importance matrix is

[W_] e = i [C(ike)]-I jT (28)

3.2.2. Control mode measure of impor-

tance. The weights associated with the jth column

of the control-surface related matrix [Qe] are based
on the open-loop output response of the jth actuator

to sinusoidal excitation by the jth control surface

5



+w2 {Mc_}) (29)

where [_m] is the matrix of modal deflections or ro-

tations at the sensor input points, {Qc3 } and {Mcj }

are the jth columns of [Qc] and [Mc], respectively,

of equation (2), and {Wj(iw)} T is the jth row of the
matrix of transfer functions from sensor inputs to ac-

tuator outputs chosen by the analyst to be included

in the weighting scheme. These transfer functions

should reflect basic characteristics of the control sys-

temsuch as measurement type, actuator dynamics,

and the (nonzero) order of magnitude of the control

gains. A high level of accuracy is not required, and

narrowband control components such as high-order
structural filters should not be included in order to

avoid the assignment of low weights to aerodynamic
terms which may be important in a subsequent con-

trol design process.

The frequency response of equation (29) is ac-
tually a Nyquist parameter that characterizes the

aeroservoelastic loop associated with the jth control

surface• The measure of importance of the Qq_ (ikt)

term is the absolute value of the derivative of 5cj with

respect to Qcij, which yields the control measure-of-
importance matrix:

[Wc]e -- q] [T(ikg)] [_rn] [C(ikt)] -1 IT (30)

3.2.3. Gust mode measure of importance.

The weighting of the gust-related matrix [Qg] is
based on the power spectral density (PSD) of the
open-loop response of selected structural points to

continuous gust with Dryden's PSD function. When

the acceleration response is of interest, the PSD of

the response associated with the jth gust column is

w2q
%(_) : P-V-{_zj }_[c(i_)]-1 {%(i_)} r2%(_) (31)

where @z.}T is vector{ j the of modal deflections at a
structural point that responds well to the jth gust,

{Qgj} is the jth column of [Qg], and ¢gj(W) is
Dryden's PSD function:

a2gj Lg 1 + 3(kiLg/b) 2
ffPgj = --

v [1+ (ktLg/b)2]2
(32)

where a. is the jth gust root-mean-square (rms)

velooty, and L 9 is the gust characteristic length.

The measure of importance of Qg_j is the derivative

of s_//_z3(_) with respect to Qgo' which yields the

following gust measure-of-importance matrix:

_g]g -- _ [_z] [C(ikl)] -1

Thus, we have the measure-of-importance matrix

[w]e= : [[w4e [We],

3.2.4. Physical weights. The weight matrices

of each group are obtained by separately normalizing
the measure-of-importance matrices such that the

maximum absolute value of the weighted tabulated
terms in each group is 1. The absolute value of

each tabulated aerodynamic term is first multiplied
by its measure-of-importance value• The maximum

resulting values (for each term separately) are

_rij = maxg [IQij(ikt)[Wijt] (34)

The weights of each group can now be defined• The

mode-related weight matrix [Ws]e has elements de-
fined by

Wsj,.,(m / 1 Wcut/)
_j _'s)i y

(35)
where Wcut is a user-defined minimum weight limit.

The other group weight matrices [Wc]t and [Wg]e
are defined similarly. Thus, the physical weight
matrix is defined as follows:

= [w je]= [[w4, [w4e

Note that the maximum weighted aerodynamic value
of each aerodynamic term is

Qi*j : max [Q )]g ij(ke (36)

where

Qij (ke) = wijelqij (ik_)t
falls between a user-defined wcut value and 1.0.

As will be demonstrated in section 4.2.1., typi-

cal variations of weighted aerodynamic magnitudes

versus k exhibit sharp peaks at tabulated reduced

frequencies of particular importance. To assure good
results at k values that fall between the tabulated

ones and to facilitate the application of the result-

ing aeroelastic model to a variety of flow conditions

|

N

F
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and control effects, it may be desired to widen the

range of high weights. Consequently, the weighting

procedure has been modified to allow the user to per-

form nwd weight-peak widening cycles where, in each

cycle, each measure-of-importance value Wij _ is set

to be equal to max (Wij(e_l) , Wijg , Wij(e+l)) "
of

the previous cycle. It may be noticed that with Wcut

= 0 and nwd = 0, the physical weights of this work
are equal to those of reference 11. With Weut = 1.0

and nwd = n k -- 2, all the physical weighting effects

are diminished and the weighting values are equal to

those of the data normalization weighting.

4. Numerical Application to the Active

Flexible Wing Model

The example herein is a numerical application to
the wind-tunnel model of Rockwell's Active Flexi-

ble Wing (AFW) tested in the Langley Transonic

Dynamics Tunnel. A top view of the aerodynamic

model is given in figure 1. The circles indicate points
at which modal data were obtained from the vibra-

tion analysis. The mathematical model consists of
16 antisymmetric modes: 1 rigid-body (roll) mode,

10 elastic modes, 4 control-surface deflection modes,

and 1 gust mode. The doublet lattice generalized

aerodynamic matrices at a Mach number of 0.9 are

tabulated at 14 k values of 0, 0.005, 0.01, 0.05, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5, and 2.0. The

control surfaces of figure 1 are driven by third-order

actuators. The control system takes a single roll-rate
measurement and commands the actuators via zero-

order control gains Gi that were designed to yield

adequate roll-rate performance.

Minimum-state (MS) approximations were calcu-

lated using the MIST computer program described in
appendix B. The MS approximation cases are sym-

bolized by mN or mP where m is the number of

approximation roots, N denotes the normalization

weighting of equation (25), and P denotes the phys-

ical weighting of equation (31). The approximation
roots in all the analyzed MS cases, given in table 1,

were arbitrarily spaced between the values of -0.03

and -3.1 and were not optimized.

4.1. Data Normalization Cases

4.1.1. The iterative approximation solu-

tion. The data normalization (N) cases are consid-
ered first. The initial 11 x 2 [D] matrix in the 2N

case is the default one, namely, all zeros except for

the Dii and the D(2/+i) i (with _ = 1 to 5) terms

which are equal to 1.0. The initial [D] in each subse-

quent case (with m = 4, 6, 8, etc.) is the final [D] of

the previous case, expanded by default columns. The

approximation constraints are data matched at k = 0

and k/= kg = 2.0. Here, 100 [D] ---* [El --- [D] itera-
tions were performed in the 2N to 10N cases, and 50

iterations were performed in the 12N to 20N cases.

Actual convergence is not tested in the program. The
variations of the total approximation error et with

the number of iterations are given in fignre 2. It can

be observed that the errors are decreasing with the

number of iterations, but the convergence rate may
be nonmonotonic and slow. However, in all the an-

alyzed cases the errors after 10 iterations are fairly
close to the final ones.

4.1.2. Comparison with other approxima-

tion methods. The final total approximation errors

of the MS N cases (data normalization) are given in

table 2 and are compared in figure 3 with those ob-

tained by the extended least-squares (ELS) method

of Roger, as outlined in references 8 and 9. The ELS

approximations were constrained to match the data

at k -- 0 only, and the approximation roots were op-
timized for best overall fit using ISAC. It can be ob-

served that the MS method without physical weight-

ing yields a similar total approximation error with
less than 30 percent of the augmenting states result-

ing from the ELS method, even without optimization

of the MS approximation roots.

4.2. Physical Weighting Cases

4.2.1. The physically weighted aerodynamic

data. The physical weighting of the tabulated aero-

dynamic data was performed at a true flow veloc-

ity of V = 5508 in/see and a dynamic pressure of

q = 1.5 psi. The control gains Gi are 0.001, -1.0,

1.0, and -1.0; the gust length is Lg = 1200 in.;
and the gust response parameter is acceleration at

the wingtip. The weights were first calculated us-

ing equation (31) with Wcut = 0; namely, there is no
low limit to the maximum weighted magnitudes of

the tabulated aerodynamic terms Q* The proba-
zJ'

bility density functions P(0, Q*) of the resulting Qi*j

values, namely, the fraction of aerodynamic terms

whose weighted maximum values do not exceed Q*,

are shown in figure 4 for each weighting group sepa-

rately. It can be observed that only about 20 percent
of the terms have Q* > 0.1 and that about 20 percent

of the terms that are not aeroelastically active have

Q* < 10 -3. In comparison, with data normalization

all the terms have Q* values of 1.0.

Variations of weighted aerodynamic magnitudes

of equation (26) with tabulated k values are shown

in figure 5 for some highly weighted terms. Weighted

aerodynamic terms of structural modes have peak

7



valuesaroundthenaturalfrequenciesof theassoci-
atedmodes.Theweightedvaluesof terms(1,13)and
(3,15)aretypicalof controltermsthat haveimpor-
tant effectsonstaticaeroelasticor higherfrequency
phenomena.Theweightingprocedurecanbeusedfor
otherpurposessuchasmodeselectionfor aeroelastic
analysisandfor investigationof flutter mechanisms.

4.2.2. Approximation convergence. MS

approximations with the physically weighted data

(P eases) were performed for the 2 to 10 root cases
listed in table 1. Appendix C defines the program

input and output required to execute one of these
cases. Two methods were used to define the ini-

tial [D] matrices. The first method (n = 1) used

the final [D] matrices of the corresponding N cases.

The second method (n = 2) was the one described
above for the N cases. The P cases are symbolized

by (mP, n - Wcut). All the P approximations were

calculated with 30 [D] _ [El _ [D] iterations. The

final physically weighted total approximation errors
et and the errors calculated with the normalization

weighting of the N cases etN are given in table 2. The

etN values of the P cases are always larger than those
of the N cases. Values of Wcut > 0 yield higher et val-

ues than those of Wcut -- 0, but lower QN values. It
can also be observed that the differences between the

two methods of selecting the initial [D] matrix are

small. Variations of total weighted approximation
errors with the number of iterations for four P cases

with Wcut = 0 and for one P case with Wcut = 0.1

are shown in figure 6. It can be observed that there

are numerical difficulties in the (10P, 1-0) case with

Wcut = 0. This happens because the low weights as-

signed to many terms effectively reduce the amount

of data, which causes ill-conditioning in the matri-
ces to be inverted in the 10th-order least-squares fit.

With Wcut -- 0.1, this difficulty disappears. The re-

sults of the (10P, 1 0) cases shown in table 2 are
those obtained after five iterations, before the nu-
merical difficulties start.

_.2.3. Approximation curve fit. Approxi-
mation curve fits for the structural vibration mode

term (5,5), the control mode term (3, 15), and the

gust mode term (1, 16) of the generalized aerody-

namic force (GAF) matrix resulting from the 4N and

the (4P, 1-0) cases are shown in the real-imaginary

plane in figures 7(a), 7(b), and 7(c), respectively.
These terms were selected from the relatively highly

weighted terms of figure 5. The P case yields a better
fit than the N case in the area of high weights: k -- 0.2

to 0.5 for GAF(5, 5), k -- 0 to 0.4 for GAF(3, 15), and

k -- 0 to 0.5 for GAF(1, 16) as can be observed in fig-

ure 5. Some high-order approximation fits are shown

in figure 8 for GAF(4, 4). It can be observed that the

8

curves are wiggly in the low-frequency region, which

may cause numerical problems of the kind shown in

figure 6 or introduce some inaccuracies in the result-

ing aeroelastic characteristics, as discussed below.

4.2.4. Accuracy of subsequent aeroelastic
characteristics. The real test of the physical

weighting is in the resulting aeroservoelastic char-
acteristics. First- and second-order, open- and

closed-loop root-loci calculations were performed

with constant velocity and Mach number and varying

dynamic pressure. The second-order calculations

were performed using the STABCAR (ref. 12) mod-
ule of ISAC in order to form baselines for evalua-

tion of the first-order results that used the MS ratio-

nal approximation for the aerodynamic data. In the
"baseline" cases, ISAC employed the p-k method to

calculate p-plane roots using quadratic interpolation

of the same tabulated aerodynamic data as used by
the first-order calculations. The first-order root-loci

calculations were performed using the First-Order

Aeroservoelastic Roots (FASER) computer program

with the MS approximation results. The baseline

flutter dynamic pressure and frequency, namely, the

parameters at which a root-loci branch crosses the

imaginary axis, are qf _ 1.9474 psi and _f ---
87.423 tad/see (k = 0.314) for the open-loop case

and qf = 1.3515 psi and wf = 90.737 rad/sec (k --
0.321) for the closed-loop case. The physical weights

were calculated for q = 1.5 psi between these two.

The qf and _f percentage errors for the various MS
cases are given in figure 9. In the low-order approx-

imation range (m < 5), the physical weighting with
Wcut -- 0 improves the accuracy of flutter parameters

significantly. Even though there is no need to upscale

the low weights, the Wcut --- 0.1 cases still yield a sig-

nificant improvement relative to the N cases. In the

intermediate range (5 < m < 9), the approximation

order starts to be too high and the flutter percentage
error level ceases to decrease, first in the (mP, 14))

cases (at m -- 6) and then in the N cases. The use of

Wcut = 0.1 yields smoother error curves and reduces
the P case error level to less than one-half that of the

N cases. Consequently, there is no advantage in us-

ing an approximation order of m > 9 in the analyzed
case. It should be noticed that the flutter dynamic

pressures are off by -10 percent (closed-loop) and

30 percent (open-loop) from the nominal q = 1.5 psi
for which the weights were calculated. This indicates

that the physical weighting, calculated at one set of

flow parameters, has a beneficial effect over a wide

parameter range.

It may be concluded from the data given above

that the parameter range for selecting the desired

combination of accuracy and model size is between



m = 2 (Wcut = 0) and m = 6 (Wcut = 0.1), both of

which yield flutter accuracy levels of 0.7 to 0.3 per-

cent. A comparison between the structural root

loci obtained by closed-loop, first-order analysis us-

ing the (4P, 1-0.07) approximation case with Wcut

= 0.07 and those obtained by second-order analy-

sis with the tabulated data is shown in figure 10.

The first-order aerodynamic and actuator roots are

beyond the plot limits. The differences between the

two root loci are very small, and it may be concluded

that this minimum-state approximation yields an ad-

equate model for aeroservoelastic analysis.

4.2.5. Various approximation constraints.

The case of (4P, 1) with Wcut -- 0.07 is used to

demonstrate the various constraint options of MIST.

The resulting approximation errors et and etN as
well as the subsequent closed-loop flutter results are

given in table 3. (In the discussion that follows,

NKF is a user-input parameter that indicates to the

program the type of constraints to be enforced. See

appendix A and table 4.) The first four cases are

given as follows: (1) data-match constraints as above

at k = 2.0 (NKF = 14); (2) data-match constraints

at k = 0.3 (NKF = 7); (3) data-match constraints

of O[Q]/Ok at k = 0 and the real part of [Q] at

k = 2.0 (NKF = 0); and (4) data-match constraints

of O[Q]/Ok at k = 0 and an approximation constraint

of [A2] = 0 (NKF = -2). All these cases yield
flutter errors of less than 0.4 percent. The NKF = 7

case (which requires previous knowledge of the flutter
reduced frequency) yields the lowest errors. The last

case has the [A2] = 0 constraint of case 4, but the

data-match requirement of O[Q]/Ok at k = 0 has been

replaced by the approximation constraint of A1 = 0

for the terms associated with the highest residualized

(IRED) vibration modes and the associated gust

terms. (See details in appendix A.) This constraint

facilitates dynamic residualization which is beyond
the scope of this work.

4.2.6. Calculation time comparisons. The

elapsed time of the MIST run for the (4P, 1-0.7) case

was 100 sec for the data weighting and 210 sec for

the 30 [D] --_ [E] ---*[D] iterations on the VAX micro-

computer. The first-order root-loci calculations with

FASER took approximately 80 sec. In comparison,
the "baseline," second-order, determinant-iteration
root-loci calculations with STABCAR took 2950 sec

(approximately 10 to 15 times longer). Hence, once
an adequate minimum-state model is determined, all

subsequent flutter analyses can be performed much

faster using first-order methods rather than second-
order methods.

5. Concluding Remarks

The minimum-state method for rational approx-

imation of unsteady aerodynamic force coefficients
has been modified to allow more combinations of con-

straints and supplemented with two data-handling

algorithms, one for normalization and the other for

physical weighting of the tabulated aerodynamic co-

efficients. The method yields an adequate first-

order, linear, aeroservoelastic mathematical model in

which the number of aerodynamic augmented states

may be lower by 70 percent (with data normaliza-

tion) to 90 percent (with physical weighting) than
that required by other commonly used approxima-
tion methods. Aeroservoelastic models with flutter

boundary error levels of less than 1 percent were ob-

tained with only 4 to 6 aerodynamic states added to

the 22 structural, 12 actuator, and 2 gust-spectrum-

related states. In this range of approximation roots,

the physically weighted solution is not very sensitive

to the method of selecting the initial matrix [D] in

the minimum-state iteration process and converges

in less than 10 steps. The various constraint options

yield similar levels of accuracy, with the exception of
the A1 = 0 slope constraint, which should be avoided
or used with caution.

The formulation in this work is the basis of

the Minimum-State (MIST) computer program pre-

sented in an appendix. The approximation formula,

the data normalization option, and the algorithm for

iterative solution with a given set of approximation
roots are similar to those of the extended minimum-

state (EMS) option in the Interaction of Structures,

Aerodynamics, and Controls (ISAC) system of pro-

grams. In computing and using the minimum-state

approximations, the main differences between the

two programs are as follows:

1. MIST requires exactly three approximation

constraints. ISAC allows greater flexibility in the

number and type of approximation constraints. Al-

though MIST uses all the constraints to reduce the
size of the approximation problem, ISAC only uses

some constraints (when they are applied) to reduce

the problem size. Some data-match constraints in

ISAC increase the problem size. For example, the

numerical application of this paper with four approx-

imation roots requires an inversion of 4 x 4 matrices in

each minimum-state iteration process. Using ISAC

with no constraints would require the inversion of

37 x 37 matrices in the first part and 52 x 52 matri-

ces in the second part of the minimum-state iteration

process. -._
2. ISAC allows optimization of the root values

(with a large computation time penalty as indicated

9



in NASATP-2776for theminimum-statecase),but
MISTdoesnot.

3. MISTfeaturesanautomatedphysicalweight-
ingprocedure,but ISACdoesnot.

4. Even though the EMS option in ISAC is
an integralpart of a largecomputationalsystem
with manyotheranalysisoptions,MIST is a small
stand-aloneprogramthat usestwostandardmatrix-

inversionlibrary subroutinesand can
adapted for interaction with any
computationalsystem.

NASA Langley Research Center

Hampton, VA 23665-5225

August 16, 1990
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Appendix A

Application of Constraints in MIST

One of the major differences between MIST and the minimum-state option in ISAC is that

the MIST approximation procedure requires three constraints (for each aerodynamic term). These

constraints, two for the real parts and one for the imaginary parts, allow the elimination of the [ A0],

[All, and [A21 matrices of equations (7) and (8) from the nonlinear least-squares iterative solution
of equations (12) and (17). Application of ISAC's methodology, which allows fewer constraints and

yields a lower total approximation error, results in a much larger set of equations to be solved in each

iteration. Since some constraints are usually desired, and use of the end-point constraints option

discussed below usually results in small effects on the total approximation error, a large time benefit

can be achieved by using constraints to reduce the number of equations in the iterative solution

without a significant adverse effect on the approximation. However, sensitivity of the results to

different constraints should be explored before determination of constraint selection is finalized.

In MIST, the steady aerodynamics (k = 0) data-match constraint (eq. (9)) is always applied. The

two other constraints are either defined by the user-input parameter NKF or set by the program in

the special cases that are discussed below. NKF identifies the tabulated reduced frequencies kf and

kg at which the real and imaginary parts of the aerodynamic data are matched, respectively. The
NKF options are as follows:

1. NKF = 1: kf = kg = max(k_). This "end-point" constraint option usually yields the lowest
total approximation error and should be used as a default.

2. NKF > 1: kf and kg are equal to the (NKF)th tabulated k. This option is to be used to

achieve good accuracy around this k value. Low values of kf may cause a wiggly approximation
in the low-frequency region because of the nearness of the k = 0 constraint•

3. NKF = 0: kf = max(ke); kg = k2. This imaginary-part constraint is equivalent to constrain-

ing OQ/a(ik) at k -- 0 to match that of the tabulated data (assuming that k2 --* 0). This may

be used to obtain accurate aerodynamic coefficients associated with rigid-body velocities.

4. NKF < 0: [A2] = 0. There is no real-part match constraint (other than at k = 0); and kg

is equal to the (-NKF)th tabulated k. With this option there are no "aerodynamic mass"
terms in Ms of equation (6). This may be an advantage in a subsequent analysis as Ms would

not have to be repeatedly inverted for every q value.

There are two cases in which the MIST program sets constraints to some terms, ignoring those

selected with NKF. These cases are defined by the input parameters NSKIP and IRED as in the

following:

1. NSKIP < 0: The last NG = -NSKIP columns are related to gust modes. The user-set real-

part constraint is replaced (for these columns only) by [A2] = 0. This enables the gust column

of equations (5) and (6) to appear without the/bg term.

2. IRED :> 0: Assuming that the last IRED vibration modes are candidates for dynamic

reduction in a subsequent program, in order to facilitate the dynamic reduction, data-match

constraints are automatically replaced in some terms by approximation constraints. These

approximation constraints and the associated partitions of the aerodynamic matrix are

Qss qsr Qsc Qsg

( - ) " ([A2]= 0) ( - ) " ([h2] = 0)

qrs q,r Q,c Q,g

([A2] --0) " (JAIl = [A2] = 0) : ([A2] = 0) " (JAIl = [A2] = 0)

II



where the subscripts s, r, c, and g are related to the retained structural modes, the reduction

candidates, the control modes, and the gust modes, respectively.
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Appendix B

The MIST Computer Program

B.1. Program Description

MIST is a FORTRAN-77computerprogram.The programreadsfive input files,createsfive
output files,andwritesinformationto a systemoutput file that is normallyassignedto the user
terminalor automaticallysentto a printer. A schematicof theprograminput andoutput filesis
givenin figure11.

EventhoughMISTcanbeusedasa stand-aloneprogram,it is designedto interactwith ISAC
throughits input andoutputfiles.Mostinput dataparameterscanbeextractedfromISAC'sdata
complex(TAPE9)usingthe DataComplexManager(DCM)module.Threeoutput filesare for
a subsequentanalysisby ISAC'smodules.ThesefilesareSPLANE.DAT to beusedasTAPE5
input to theSPLFITmodulewhichplotstheapproximationcurves,SPLCOF.DAT to beusedas
TAPE5input to the DCM modulefor storingthe approximationcoefficientson thedatacomplex
(forsubsequentstate-spaceanalysisby theDYNARESmodule),andThSTAB_INT.DAT to be
usedasa TAPE5inputto theSTABCARmodulefor second-orderanalysis.

MIST is constructedof a mainpart, fourbuilt-in subroutines,andtwo librarysubroutines.A
briefflowchartof themainpart andthebuilt-in subroutinesisgivenin figure12.Thefunctionsof
thebuilt-in subroutinesareasfollows:

Subroutine REAR: Reads the tabulated reduced frequency values and the associated aerody-
namic matrices.

Subroutine DED: Performs a single [D]_[E]-_[D] iteration and calculates the current

approximation errors.

Subroutine WEIGHTS: Calculates weights to be applied in the least-squares solutions.

Subroutine TRANS: Calculates the control-system transfer function for physically weighting

the control mode aerodynamics.

The library subroutines are as follows:

Subroutine DMTINV: Solves a real-coefficient system of equations via matrix inversion

(double precision).

Subroutine DCXINV: Inverts a complex matrix (double precision).

B.2. Input Files

Up to five free-format data input files (indicated in fig. 11) may be required for executing a MIST

run. A general description of the files, the conditions in which they are required, and the input

aids are given below. Detailed descriptions of the input parameters and their limits are given in

tables 1-5. The input files are as follows:

.

,

IMIST.DAT (file 1): User-input run parameters and restart data. This file is either

constructed by the user for initiating an approximation case or constructed by a previous

MIST run (as the IM.DAT output file) for restarting the [D] _ [E] --* [D] iterations with the

last calculated [D] and/or weighting matrices. Before restarting, IM.DAT must be renamed

as IMIST.DAT. A detailed description is given in table 4.

TABF.DAT (file 4): Flow and structural properties. This file is required for the physical
weighting only (IWE = 2). The file may be first constructed by retrieving the natural frequen-

cies (FREQ), the generalized masses (GMASS), and the structural dampings (DAMPINGS)

from ISAC's data complex (TAPE9) using the DCM module. The first line is then replaced by

13



.

.

.

a record containing the weighting flow parameters. If the data contain gust columns, weight-

ing gust parameters are added at the bottom of the file. A detailed file description is given in
table 5.

TABAERO.DAT (file 5): Tabulated aerodynamic matrices (always required). This file

may be constructed by retrieving the aerodynamic matrices (AERO) from ISAC's TAPE9
data complex using the DCM module. A detailed file description is given in table 6.

TRAN.DAT (file 6): Control system data. This file is required by subroutine TRANS for

physical weighting only (IWE = 2), when the data contain control columns. This subroutine
assumes roll-rate sensors, constant-gain control laws, and third-order actuators. A detailed

file description is given in table 7.

TbSTAB TAB.DAT: STABCAR input (TAPEb) with tabulated matrices. This file is

required only when the user intends to run STABCAR for a second-order analysis. MIST

replaces the tabulated aerodynamic data with approximated aerodynamics (if ISTAB#0). The

file can be constructed by retrieving the AERO, GMASS, FREQ, DAMPINGS, and SENDEF

(when required) from ISAC's TAPE9 using the DCM module. A detailed file description is

given in table 8.

B.3. Output Files

A default-system output file and up to five additional output files (indicated in fig. 11) are

produced by MIST. A description of the output files and their subsequent usage is given as follows:

1. Default-system output file: Run-time monitor parameters, described in table 9. Data written

to this file are generally sent to user console. If running BATCH, this file is generally printed

automatically at end of execution.

2. IM.DAT (file 2): Enables restarting the [D] ---*[E] --, [D] iterations by renaming IM.DAT as

IMIST.DAT. The parameters are described in table 4. The values of [D] (record 3) are the

result of the last [D]_[E]---_[D] iteration. IWE (record 1) is set to 1, which causes the restart
run to read the previously calculated weights from IMIST.DAT.

3. SPLANE.DAT (file 3): The approximation coefficient matrices. These can be defined as

TAPE5 for a subsequent SPLFIT run which plots the approximation curves. Created only if

IFILE#0. A detailed description is given in table 10.

4. RES.DAT (file 7): Echo of run parameters, iteration errors, and main results. A detailed

description is given in table 11.

5. TbSTAB INT.DAT (file 9): STABCAR input file (TAPEb). This file is identical to

TbSTAB TAB.DAT (table 8) except for the tabulated aerodynamic matrices (record 2)
which are replaced by approximated ones Created only if ISTAB#0.

6. SPLCOF.DAT (file 10): The approximation coefficient matrices. To be used as TAPE5 for

storing the data on ISAC's data complex (TAPE9) using the DCM module STORE command:
The data are stored with code name SPLANE which consists of one record with NLAST words.

NLAST is written by MIST to the system output file (user console, see table 12). Created

only if IFILE#0.

|

E
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Appendix C

Input and Output for a Sample Run

Input files and the user-console printout for case (4P, 1-0.1) of section 4.2.2. are given in this
appendix. Thc sample case is a four-root physically weighted approximation where the initial [D]
is the final one of the corresponding data normalization case (4N) and where Wcut = 0.1. A block

diagram of the MIST input and output files is given in figure 11. The input files IMIST.DAT,
TRAN.DAT, and TABF.DAT are given in tables 13, 14, and 15, respectively. The printout to

the user console is given in table 16.
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Symbols

A

Aft, Agt

A* *
f_, Agt

Ao, A1, A2

B

Bs

Bw

b

C

Cf

Cg

D

E

F

Fs

F

G

G

I

Ks

k

kf

]¢g

ke

Lg

Ms

(2ns + m) × (2ns + m) open-loop state-form system matrix

(eq. (5))

weighted least-squares matrices defined in equation (21)

weighted least-squares matrices defined in equation (23)

ns × (ns + nc + ng) coefficient matrices of rational approximation

(eq. (3))

(2ns + m) x 3nc state-form control matrix (eq. (5))

ns x ns generalized structural damping matrix

(2ns + m) x 2ng state-form control matrix (eq. (5))

reference semichord

ns x ns open-loop system matrix (eq. (2))

defined in equations (13a) or (14a)

defined in equations (18) or (19)

ns x rn coefficient matrix in rational approximation (eq. (3))

m x (n8 + nc + ng) coefficient matrix in rational approximation
(eq. (3))

ns x (ns + nc + ng) real part of tabulated aerodynamic matrices

ns x 1 vector of generalized aerodynamic forces (eq. (1))

ns x (ns + nc + ng) real part of approximated aerodynamic
matrices (eq. (7))

defined in equations (13b) or (14b)

ns x (ns + nc + ng) imaginary part of tabulated aerodynamic
matrices

ns x (ns + nc + ng) imaginary part of approximated aerodynamic
matrices (eq. (8))

defined in equations (18) or (19)

unit matrix

ns x ns generalized structural stiffness matrix

reduced frequency, wb/V

tabulated reduced frequency at which real-part match constraint
is applied

tabulated reduced frequency at which imaginary-part match

constraint is applied

tabulated reduced frequency

gust characteristic length

ns x ns generalized structural mass matrix
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W

W

w

Wcut
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ns x ns generalized structural and aerodynamic mass matrix

(eq. (6))

number of aerodynamic augmented states

initial [D] method in numerical application

number of control surface modes

number of gust modes

number of measurement points

number of structural vibration modes

number of weight-peak widening cycles

ns × (as + nc + ng) matrix of generalized unsteady aerodynamic
force coefficients

ns x (ns + nc + ng) rational approximation of Q (eq. (3))

absolute value of (i, j)th weighted aerodynamic term

maximum of Qij values at various tabulated reduced frequencies

nondimensionalized Laplace variable, sb/V

dynamic pressure

m x m diagonal matrix of aerodynamic roots in rational approxi-

mation (eq. (3))

Laplace variable

nc x nm control-system transfer function matrix, including
sensors and actuators

3nc x 1 control vector (eq. (5))

true flow velocity

matrix of weights assigned to tabulated data

maximum product of the magnitude of an aerodynamic tabular

value times its measure of importance (eq. (34))

measure-of-importance matrix (eqs. (28), (30), and (33))

2ng x 1 gust vector (eq. (5))

lowest limit of Qi*j

ng x 1 vector of gust velocities

(2ns + m) x 1 state vector (eq. (5))

nc x 1 vector of control-surface deflections (actuator outputs),
rad

weighted approximation error of (i, j)th term in gth tabulated

matrix (eq. (24))

total weighted approximation error (eq. (24))

total weighted approximation error calculated with weights of

equation (25)

i

=

|

i

m

=

m

|

m
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_g

Cg

gr m

o)

Subscripts:

a

c

g

e

8

Notation:

[. ]r

{')

(

Acronyms:

AFW

ELS

EMMP

EMS

GAF

ISAC

LS

MIST

MMP

MP

MS

arbitrary positive integer

ns x 1 vector of generalized displacements of vibration modes

gust root-mean-square (rms) velocity

Dryden's power spectral density function

nm x ns sensor-input deflection matrix

ng x ns structural modal deflections at acceleration points for

gust weighting

frequency of oscillation

aerodynamic

control-surface mode

gust velocity mode

related to gth tabulated reduced frequency (ke)

structural vibration mode

transpose of a matrix [ • ]

column vector

(i, j)th element of matrix indicating ith row, jth column

Active Flexible Wing

extended least squares

extended modified matrix-PadS

extended minimum state

generalized aerodynamic force

Interaction of Structures, Aerodynamics, and Controls system of

programs

least squares

Minimum-State computer program

modified matrix-Padd

matrix-Pad6

minimum state

A dot over a symbol indicates the derivative with respect to time.
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Table1. Minimum-StateAerodynamicApproximationRoots

m

2

4

6

8

10

12

15

2O

Approximation roots, Ri

-0.4, -1.5

-0.3, -0.6, -1.1, -1.6

-0.2, -0.4, -0.7, - 1.0, - 1.4, - 1.8

-0.1, -0.3, -0.5, -0.7, - 1.0, - 1.3, - 1.6, -2.0

-0.05, -0.2, -0.4, -0.6, -0.8, - 1.0, - 1.3, - 1.6, -2.0, -2.5

-0.05, -0.15, -0.3, -0.45, - 0.6, -0.8, - 1.0, - 1.2, - 1.4, - 1.7, - 2.1, -2.6

-0.04, -0.1, -0.2, -0.3, -0.45, -0.6, -0.75, -0.9, - 1.1, - 1.3, - 1.5, - 1.7, -2.0,
-2.4, -3.0

-0.03, -0.09, -0.15, -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.82, -0.95, - 1.1, - 1.25, -
-1.7, -1.9, -2.2, -2.6, -3.1

1.4, - 1.55,

Table 2. Minimum-State Approximation Errors

Weight
method

Data normalization

Physical

Initial [D]
method Wcut

2

1 0

Approximation errors at--
Error

parameter m=2 m=4 m=6 m=8 m = 10
Ct = _t N 4.978 2.914 1.938 1.696 1.284

ct

(t N

2 0 et

QN

1 0.1

0.523

10.869

0.529
10.211

0.507

9.820

0.509

9.513

0.501

5.776

0.502

6.007

01488
7.906

0.491

7.713

0.462

10.653

0.465

9.932

et 0.641 0.564 0.549 0.537 0.502
etN 7.544 4.135 3.402 2.715 3.510

J
=
!

E

E
|

Case NKF

1 14

2 7

3 0

4 -2

5 -2

2O

Table 3. Approximation Results With Various Constraint Sets

IRED et
0 0.532

0 .525

0 .523

0 .528

4 .569

ct N

4.240

15.287

11.587

9.984

15.879

q/,
psi

1.347

1.353

1.355

1.356

1.376

q f error,
percent
-0.362

.096

.281

.296

1.805

90.904

90.749

90.800

90.886

90.983

wf error,
percent

0.184

.013

.069

.164

.271

m

Z

L



Table 4. IMIST.DAT Input Parameters

Record

1

Description

NC, NR, NSKIP, N1, N2, M, NK, NKF, ITMAX, NPR, IFILE, IWE, ISTAB, IRED

NC Number of columns in the tabulated aerodynamic matrices
on TABAERO.DAT (0 < NC <_40)

NR Number of rows in the tabulated aerodynamic matrices
on TABAERO.DAT (0 < NR <_40)

NSKIP > 0

<0

Number of first modes whose data on TABAERO.DAT

is to be skipped
NG = -NSKIP. The last NG (out of N1) columns are

gust related. (-3 < NSKIP < N2)

N1 Number of columns to be approximated (0 < N1 < NC)

N2 Number of rows to be approximated (0 < N2 < NR)

Note: The number of control modes is (N1 - N2) or

(N1 - N2 + NSKIP) when NSKIP < 0.

M Number of approximation roots (0<_M_ 30)

NK Number of tabulated reduced frequencies (k) (2 < NK <_ 15)

NKF --1

>1
=0
<0

All real and imaginary parts are matched at k(NK).
All real and imaginary parts are matched at k(NKF).
Real parts are matched at k(NK) and imaginary parts at k(2).
[A2] = 0; imaginary parts are matched at k(-NKF).

Note: See appendix A for discussion on constraints.

ITMAX Number of D_E_D iterations (ITMAX > O)

NPR >0

<0

Write approximated aerodynamic terms on file
RES.DAT at all tabulated k values (except k = 0) and at

(NPR - 1) intermediate k values for each interval.
Write absolute values of weighted tabulated aerodynamics
on file RES.DAT.

IFILE #0

<0

Write approximation matrices on SPLANE.DAT and on
SPLCOF.DAT.

Write weight matrices on IM.DAT.
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Table 4. Concluded

Record

1 (contd) IWE

ISTAB

IRED

Description

:2 R(I), I = 1, M

=1

--2

--3

Use weight matrices from a previous run.

Calculate weight matrices based on physical weighting.

Calculate weight matrices for data normalization.

3 D(I, J), J = 1, M

>0

=0

<0

Note:

Create file TSSTAB INT.DAT with no sensors.

Do not create T5STAB_INT.DAT.

Create file T5STAB WT.DAT with -ISTAB sensors.

If IRED # 0, the program sets ISTAB = 0.

4

Number of highest frequency modes that are candidates for

dynamic reduction (0 _< IRED < N2)

If M = 0, the rest of the file is not required.

Approximation roots (diagonal of [R]).
Distinct negative values

Record 3 is repeated for I -- 1, N2.

The Ith row Di of the iniidal guess for [D]

where Di # 0 and rank [D] = min (M, N2)

If IWE # 1, the rest of the file is not required.

PNOR(I), I = 1, N1 Internal mode normalization vector created in

a previous run

Records 5 and 6 are repeated for K = 1, NK - 1.

5 QA(K) The (K + 1)th tabulated k

Record 6 is repeated for J - 1, N1.

6 WE(I, J, K), I = 1, N2 The Jth column of the weight matrix related to the

(K + 1)th tabulated k

E

22
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Table 5. TABF.DAT Input Parameters

_ecorc Description

B, RO, V, PI, WCUT, NWD

B

RO

V

PI

WCUT

NWD

Reference semichord (b) used in generating the tabulated aerodynamic
matrices

Air density at the design point for physical weighting (p)

True airspeed at the design point (V)

71-

The minimal maximum absolute value of each weighted aerodynamic term,

-Qij (Wcut of eq. (31)) (0 < WCUT <_ 1)

Number of weight-peak widening cycles. In each cycle, all the physical

Wij e values are set to be equal to max{Wijff_l), Wij _, Wij(t,+l)}

of the previous cycle. (0 < NWD <_ NK - 2)

FR(I), I = 1, NR Natural frequencies (in Hz) of the vibration modes, supplemented
by zeros for the control modes

3 Dummy record

(GM(I, J), I = 1, NR), J = 1, NR

["Mss Msc"

The generalized mass matrix ] MT Mcc
• 3C

5 Dummy record

6 DA(I), I = 1, NR Dimensionless modal damping of.the vibration modes, supplementcd

by zeros for the control modes

If NSKIP > 0 (no gust columns), the rest of the file is not required.

7 [ ELG Gust length scale (Lg)

SWG(J)

Records 8 and 9 are repeated for J = 1, NG where NG = -NSKIP.

Jth continuous gust root-mean-square value (a_) (swc(J) > 0)

Note: Only the ratio between different SWG(J) values affects the results.

XI(J, I), I = 1, N2 Modal deflections at a structural point selected for weighting the

Jth gust column ([@z3]) ([[@zj] ¢ [0])
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Table6. TABAERO.DAT Input Parameters

Record Description

QAY(J,I), I = 1, NK Tabulated reduced frequencies (ks) (kl =0)

Record 2 is repeated for I = 1, NK.

(AR(J, K, I), AI(J, K, I), J = 1, NR), K = 1, NC

Real and imaginary parts of the tabulated aerodynamic

matrices, given coIumn by column

Table 7. TRAN.DAT Input Parameters

Record Descript ion

1 NS Number of sensors (0 < NS _< 4)

Records 2 and 3 are repeated for I = 1, NS.

2 NP(I) = 0 Deflection sensor
= 1 Rate sensor
-- 2 Acceleration sensor

3 FI(I, J), J = 1, N2 Modal deflections or rotations at the location of

the Ith sensor ([_rn_J) ([_rniJ=¢ [0J)

Records 4 and 5 are repeated for I = 1, N3, where N3 = N1 - N2 - NG.

4 GAIN(I) Gain of the Ith control mode (>0)

5 ACT(I, J), J = 1, 3

24

Coefficients of the Ith actuators whose transfer function is defined by

GAIN(I) • ACT(I, 1)
Tact = S 3 + ACT(I, 3)* S 2 + AcT(I, 2) • S + ACT(I, 1)

F-
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Table 8. T5STAB TAB.DAT Input Parameters

Record Description

1 QAY(I), I = 1, N Tabulated reduced frequencies (kt). Values of k e

at which match constraints are not imposed may
be different from those in TABAERO.DAT.

Record 2 is repeated NR x NC x NK times.

2 API(I, J, K), AP2(I, J, K) Real and imaginary parts of the (I, J)th term of the Kth

tabulated aerodynamic matrix. These values are

ignored by the program.

3 (GM(I, J), I = 1, NR), J = 1, NR Generalized mass matrix

4 FR(I), I = 1, NR Natural frequencies (in Hz)

5 D(I), I = 1, NR Modal structural dampings

If ISTAB > 0, the rest of the file is not required.

Record 6 is repeated for J = 11 NS where NS = - ISTAB.
6 FI(I, J), I = 1, NR Modal deflections at the location of the Jth sensor

(L,I,,,,.,j)
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Table 9. User-Console Output Parameters

Record]

1

Description

If IWE _ 2, records 1-4 are not typed.

B, RO, V, PI, WCUT, NWD, Q

B, RO, V, PI, WCUT, NWD

Q

The parameters of TABF.DAT, record 1 (table 5)

The dynamic pressure, based on RO and V

Record 2 is repeated for I = 1, N2.

FR(I), GM(I), DA(I), PNOR(I)

FR(I)

GM(I)

DA(I)

PNOR(I)

The Ith natural frequency from TABF.DAT

The Ith generalized mass from TABF.DAT

The Ith modal damping from TABF.DAT

A division factor that normalizes the modes to unit generalized

mass. PNOR(I) = SQRT(GM(I)). This is an internal process.

The results are renormalized before being output.

Record 3 is repeated for I = 2, NK.

DETE, FRK(I)

DETE A complex output parameter of subroutine DCXINV. A value

other than (1, 0) or (-1, 0) indicates numerical problems in the

complex matrix inversion.

FRK(I) The frequency associated with the Ith tabulated k, k(V/27rb)

4 P, P1, P2 The percentage of small weighted aerodynamic terms that are

affected by Wcut in equation (31), for each weighting group

separately (vibration mode, controls, and gusts)

Record 5 is repeated ITMAX times (once for each [D]---*[E]_[D] iteration).

5 ITER, ER, ERI

ITER

ER

ER1

Note:

Iteration number

Total approximation error (eq. (24))

Total approximation error calculated with data normalization

weighting of equation (25)

When IWE = 3, ER = ER1. Increasing ER indicates numerical

problems in the [D]---, [E]--, [D] iterations.

Record 6 is typed only if IFILE ¢ 0.

6 NLAST The number of words written on SPLCOF.DAT:

NLAST= (M+3), NR. N1 +M. (N1 +N2)

!
=
|

!
|

|

E
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Table 10. SPLANE.DAT Output Parameters

Record l Description

Record 1 is repeated for L = 1, M + 3.

1 (F(I, J, L), J = 1, N1), I = 1, N2

The [A-_+2] coefficient matrix, with ",/-- L - 3, of the approximation in
equation (3), expanded in the form:

[Q(p)] = [A0] + [A1]p + [A2]p 2 +
-y=l

where, starting with 3' = 1, [A-y+2] = {D-_}[E_]. This expansion is required

for approximation curve plotting by SPLFIT.

2 (D(I, L), L = 1, M), I = 1, N2 The final [D]

3 (E(L, J), J = 1, N1), L = 1, M The final [E]

4 N2, N1, M

N2

N1

M

Number of rows of approximated aerodynamic matrix

Number of columns of approximated aerodynamic matrix

Number of aerodynamic roots

5 -R(L), L = 1, M Aerodynamic approximation roots, with inverted
sign to be consistent with ISAC's formulation

27



Table11.RES.DAT OutputParameters

28

Record Description
1 NC,NR,NSKIP,N1,N2,M, NK, NKF, ITMAX, NPR,IFILE, IWE,

ISTAB,IRED

Runparameters,first recordof IMIST.DAT
2 -R(L), L = 1, M Aerodynamic approximation roots, with inverted sign

3 QAY(I), I = 1, NK Tabulated reduced frequencies

Record 4 is repeated ITMAX times.

4 ITER, ER, ER1 Approximation errors, same as record 5 of table 9

Record 5 is repeated for I = 1, N2.

5 D(I, J), J = 1, M The Ith row of the final [D]

Record 7 is repeated for I = 1, M.

7 E(I, J), J = 1, N1 The Ith row of the final [E]

Records 8 and 9 are written only if NPR < 0. Repeat for K = 2, NK.

8 QAY(K) The Kth tabulated k

9 (WEQ(I, J), I = 1, N2), J = 1, N1

Absolute values of the Kth-weighted tabulated aerodynamic matrix

Records 10 and 11 are written only if NPR > 0. They are repeated N2 x N1 times.

l0 I, J Row and column identification numbers

Record 11 is repeated (NK - 1) * NPR + 1 times.

11 Q, ARR, AP1, AAI, AP2, ER1

Q

ARR

AP1

AAI

AP2

ER1

Note:

The interpolated k value

Real part of the (i, j) tabulated aerodynamic term

Real part of the (i, j) approximated aerodynamic term

Imaginary part of the (i, j) tabulated aerodynamic term

Imaginary part of the (i, j) approximated aerodynamic term

Squared approximation error of the (i, j) term

ARR, AAI, and ER1 are calculated at tabulated k values only.

i
Z

E

i
E

D
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Table 12. SPLCOF.DAT Output Parameters

Record [ Description

Record 1 is repeated for J = 1, N1.

(F(I, J, L), I= 1, NR),L= 1, M+3

Approximation coefficient matrices. Same as record 1 of SPLANE.DAT

(table 10) with two exceptions: (1) the matrices here are given in a

different order, and (2) the matrices are supplemented by zero terms
for the NR-N2 bottom rows.

2 (D(I, L), I = 1, N2), L = 1, M The final [D], column by column

3 (E(L, J), L = 1, M), J = 1, nl The final [E], column by column
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(NC NR NSKIP N1

16 15 -1 16

Table 13. IMIST.DAT for the Sample Case

N2 M NK NKF ITMAX NPR

11 4 14 1 30 0

-0.300 -0.600 -1.100 -1.600

1085.242

-0.9773058

4:230847

2.012684

-0.9957080

-13.57052

-6.311030

11.30995

5.715536

4.989137

2.287535

-2771.134

2.497540

-5.392477

-4.920019

3.737066

17.89878

3.913992

-7.358065

-5.240108

-6.978589

-2.101954

766.4360

-0.5862706

0.4645342

1.834980

-1.985531

-1.509577

0.9018466

-2.402427

-0.5718663

0.3833005

-0.3638385

IFILE

1

-273.9914

0.2077749

-0.2338193

-0.7853356

1.092124

-0.5197472

-0.9920467

2.099382

0.9348391

0.9326578

0.6776571

1-WE

2

ISTAB

0

IRED)

0

(Rj

(initial [D])

30

Table 14. TRAN.DAT for the Sample Case

1.0000 -7.92027E-05 -2.80898E-03 -4.16988E-04 2.04932E-03

1.18939E-03 -9.40258E-04 8.20041E-04 3.60080E-05 5.17672E-05

1.23072E-03

66157.39

70406.67

90678.24

136576.6

259.97

325.39

358.43

217.40

0.001

6751689,

-0.1

6800581.

0.1

10867040.

-0.1

17462768.

(NS)

(NP(1))

(L_mJ)

(Gains and actuator coefficients)

z:

F



Table 15. TABF.DAT for the Sample Case

( B
19.88

.000000

7.105512

8.727085

15.893922

16.939290

27.929165

38.391348

39.638754

44.763802

49.371975

49.917961

0.

0.

0.

0.

RO V PI WCUT

09888E-6 5508. 3.14159 0.1

(Natural frequencies)

GMASS
128.429 0.0000000E+00 0.0000000E+00 0.0000000E+00

0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

0.0000000E+00 - 0.2768736E+00 - 0.2614632E+00 -0.1412688E +00

0.0000000E+00 0.2590083E-02 0.0000000E+00 0.0000000E+00
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

0.0000000E +00 -0.3539690E-03 - 0.1034990E- 02 - 0.5807050E- 03

0.0000000E+00 0.0000000E+00 0.2590083E-02 0.0000000E+00

0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

0.0000000E + 00 - 0.5042240E - 04 - 0.2872990E- 03 - 0.1701440E- 03

0.8494820E-03 -0.9037930E-03 0.1543230E-02 -0.5283170E-02

-0.9004400E-03 0.3764320E-01 0.0000000E+00 0.0000000E+00

-0.2614632E+00 -0.I034990E-02 -0.2872990E-03 0.6395270E-03

0.8873140E-03 0.4341100E-02 -0.5119100E-03 0.2136360E-02

-0.6568000E-02 0.0000000E+00 0.4349060E-01 0.0000000E+00

-0.1412688E+00 -0.5807050E-03 -0.1701440E-03 0.6145630E-03

-0.2714550E-03 0.2321360E-03 0.2367750E-03 -0.7962690E-03

0.1544600E-03 0.0000000E+00 0.0000000E+00 0.7372500E-02

- 0.1368480E +00 - 0.9522450E- 03 - 0.3128950E - 03 - 0.1568180E- 03

0.1221410E-02 0.5424900E-05 0.4291470E-03

0.0000000E+00 0.0000000E+00 0.0000000E+00

0.03 0.03 0.03 0.03 0.03 0.03 0.03

0.00 0.00

0.1450120E-03

0.1443590E-02

DAMPINGS

0.00 0.03
0.00 0.00

1200.

1.

-47.9085

-1.00761E-01

-3.90583E-03

6.92438E-02 -2.42383E-01 - 1.25759E-01

2.03161E-02 -6.98395E-02 -4.04137E-03

0.0 0.0 0.0

NWD )
0

0.0000000E+00

0.0000000E+00

-0.1368480E+00

0.0000000E+00

0.0000000E+00

-0.9522450E-03

0.0000000E+00

0.0000000E+00
-0.3128950E-03

0.1339410E-02

0.0000000E+00
-0.1581130E-03

-0.2563590E-02

0.0000000E+00

-0.2776430E-03
0.2473540E-03

0.0000000E+00
0.6420640E-05

0.6727150E-04

0.8953550E-02

0.03 0.03

(Lg)

2.03764E-01

2.27311E-02 (L_zj])

0.0
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Table 16. Uscr-Console Printout

32

( B RO
19.88000 9.8880001E-08

( WCUT NWD )
O.1000000 0

( FR GM
0.0000000E+00 128.4290

7.105512 2.5900831E-03
8.727085 2.5900831E-03
15.89392 2.5900831E-03
16.93929 2.5900831E-03
27.92916 2.5900831E-03
38.39135 2.5900831E-03
39.63876 2.5900831E-03
44.76380 2.5900831E-03
49.37197 2.5900831E-03
49.91796 2.5900831 E- 03

DETE
1.00000000000000,0.000000000000000E+000

*I.00000000000000,0.000000000000000E+000'
_I.00000000000000,0.000000000000000E+000'
1.00000000000000,0.000000000000000E+000'
1.00000000000000,0.000000000000000E+00ff
1.O0000000000000,O.O00000000000000E+O00'
1.00000000000000,O.O00000000000000E+O00'
1.00000000000000,0.000000000000000E+000'
1.00000000000000,0.000000000000000E+000'
1.O0000000000000,O.O00000000000000E+O00'
1.O0000000000000,O.O00000000000000E+O00'
1.O0000000000000,O.O00000000000000E+O00'
1.O0000000000000,O.O00000000000000E+O00

V
5508.000

DA

0.0000000E+00
2.9999999E-02
2.9999999E-02
2.9999999E-02
2.9999999E-02
2.9999999E-02
2.9999999E-02
2.9999999E-02
2.9999999E-02
2.9999999E-02
2.9999999E-02

kV/2rrb
0.2204794
0.4409588

i 2.204794
4.409588
8.819177
13.22876
17.63835
22.04794
26.45753
35.27671
44.09588
66.14382
88.19176

PERCENTAGE OF SMALL WEIGHTS IS 78.51 86.36 63.64
THE ERROR IN ITER. 1 IS 0.5753782E+00 NORM. ERROR
THE ERROR IN ITER.

THE ERROR IN ITER.
THE ERROR IN ITER.
THE ERROR
THE ERROR
THE ERROR
THE ERROR
THE ERROR
THE ERROR IN
THE ERROR IN
THE ERROR IN
THE ERROR IN
THE ERROR IN

2 IS 0.5691916E+00 NORM. ERROR
3 IS 0.5661231ET00 NORM. ERROR
4 IS 0.5652547E-00 NORM. ERROR

IN ITER. 5 IS 0.5647669E--00 NORM. ERROR
IN ITER. 6 IS 0.5644447E_-00 NORM. ERROR
IN ITER. 7 IS 0.5642145E_-00 NORM. ERROR
IN ITER. 8 IS 0.5640404E+00 NORM. ERROR
IN ITER. 9 IS 0.5639035E+00 NORM. ERROR

ITER. 10 IS 0.5637924E+00 NORM. ERROR
ITER. 11 IS 0.5637015E+00 NORM. ERROR
ITER. 12 IS 0.5636257E+00 NORM. ERROR
ITER. 13 IS 0.5635620E+00 NORM. ERROR
ITER. 14 IS 0.5635078E+00 NORM. ERROR

THE ERROR IN [TER. 26 IS 0.5632138E+00 NORM. ERROR
THE ERROR IN ITER. 27 IS 0.5632033E+00 NORM. ERROR
THE ERROR IN ITER. 28 IS 0.5631942E+00 NORM. ERROR
THE ERROR iN ITER. 29 IS 0.5631857E+00 NORM. ERROR
THE ERROR IN ITER. 30 IS 0.5631785E-00 NORM. ERROR
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Figure 1. Top view of AFW aerodynamic model.
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Figure 2. Minimum-state error convergence versus number of iterations for data normalization cases.
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Figure 3.
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Figure 71 Minimum-state curve fits for structural-, control-, and gust-related aerodynamic terms.
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Figure 9. Flutter dynamic pressure and frequency errors using various minimum-state approximations.
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IMIST.OAT (1)

run parameters I TABF.DAT (4)
flow and struc-
tural properties

IWE=2 1

TABAE RO.DAT (5)

tabulated aero-
dynamic matrices

TRAN.DAT(6)

control system

T5STAB_TAB.DAT (8) I

STABCAR input with I

tabulated matrices Iand restart data

IM.DAT (2)

parameters and
restart data

SPLANE.DAT(3)

approximation
coefficients

ISTAB#0

RES.DAT (7)

main results

data

I IWE=2 and
N1-NG>N2

ISTAB_0

IFILE#0

T5STAB_INT.DAT (9)

STABCAR input with
interpolated matrices

(_TABCAR_

SPLCOF.DAT (10)

approximation
coefficients

i

Figure 11. MIST input and output files.
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9.

I Enter programMIST

_t
Read from IMIST.DAT:

- Run parameters
- Aerodynamic roots
- Initial [D]

Call REAR to read
aerodynamic data.

Calculate coefficients
of equations (12) and (17).

Call WEIGHTS to calculate
weighting matrices.

Transform aero matrices
to normalized modes.

Call DED to perform
[D] - [E]- [D] iterations.

Transform matrices back
to unnormalized modes.

Write results:
- [D], mode normalization

factors, and weights on
IM.DAT:

- [D], [E], and weighted
aero data (if NPR < 0),
or approximated aero
(if NPR > 0) on RES.DAT.

- If 1FILE :f 0, write
approximation matrices
on SPLANE.DAT and on
SPLCOF.DAT to be used
by ISAC.

If ISTAB =f0, replace
STABCAR tabulated aero
input file with an
approximated aero file.

? Subroutine REAR

Read tabulated k values
and aerodynamic matrices

Subroutine WEIGHTS

If IWE = 1 (precalculated weights):
Read normalization factors and
weight matrices from IMIST.DAT.

If IWE = 2 (physical weighting):
1. Read flow parameters and

structural data from TABF.DAT

2. Normalize modes to unit
generalized mass.

3. For each tabulated k =f0:
- Set system matrix [C(ik)].
- Call DCXlNV to invert [C(ik)],

modes related weights (eq. (28)).
- Call TRANS for control-system

transfer function and calculate
control-related weights (eq. (30)).

- Calculate gust-related weights
(eq. (33)).

4. Normalize weights (eqs. (34)
and (35)).

If IWE = 3 (data normalization ):
Calculate data normalization
weights (eq. (25)).

Subroutine DED

1. Construct eq. (20) and call
DMTINV' to solve for [E].

2. Construct eq. (22) and call
DMTINV to solve for (D).

3. Calculate total error (eq.
(24)) with:

- Weights from WEIGHTS
- Equation (25)

Figure 12. MIST flowchart.

Subroutine TRANS

1. Read sensor input modal
deflections, control gains,
and actuator coefficients.

2. Calculate control-system
transfer function.
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